New Energy Definition for Higher Curvature Gravities

نویسندگان

  • S. Deser
  • Bayram Tekin
چکیده

We propose a novel but natural definition of conserved quantities for gravity models quadratic and higher in curvature. Based on the spatial asymptotics of curvature rather than of metric, it avoids the GR energy machinery’s more egregious problems–such as zero energy “theorems” and failure in flat backgrounds – in this fourth-derivative realm. In D > 4, the present expression indeed correctly discriminates between second derivative Gauss-Bonnet and generic, fourth derivative, actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gravitational energy in quadratic-curvature gravities.

We define energy (E) and compute its values for gravitational systems involving terms quadratic in curvature. There are significant differences, both conceptually and concretely, from Einstein theory. For D=4, all purely quadratic models admit constant curvature vacua with arbitrary Lambda, and E is the "cosmological" Abbott-Deser (AD) expression; instead, E always vanishes in flat, Lambda=0, b...

متن کامل

All higher curvature gravities can be bootstrapped from their linearizations

We show that the full covariant versions of higher curvature order gravities, like that of GR itself, can be derived by self-coupling from their linear, flat space, versions. Separately, we comment on the initial version of the bootstrap.

متن کامل

Polycritical Gravities

We present higher-derivative gravities that propagate an arbitrary number of gravitons of different mass on (A)dS backgrounds. These theories have multiple critical points, at which the masses degenerate and the graviton energies are non-negative. For six derivatives and higher there are critical points with positive energy.

متن کامل

Solar System tests disfavor f(R) gravities

Using the elegant method employed recently by Erickcek, Smith and Kamionkowski [1], on the premise that the space-time of Solar System is described by a metric with constant-curvature background added by a static perturbation, we show that many f(R) gravities are ruled out by Solar System tests.

متن کامل

The Palatini formalism for higher-curvature gravity theories

We compare the metric and the Palatini formalism to obtain the Einstein equations in the presence of higher-order curvature corrections that consist of contractions of the Riemann tensor, but not of its derivatives. We find that in general the two formalisms are not equivalent and that the set of solutions of the Palatini equations is a non-trivial subset of the solutions of the metric equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007